Pentameric organization of the ribosomal stalk accelerates recruitment of ricin a chain to the ribosome for depurination.
نویسندگان
چکیده
Ribosome inactivating proteins (RIPs) depurinate a universally conserved adenine in the α-sarcin/ricin loop (SRL) and inhibit protein synthesis at the translation elongation step. We previously showed that ribosomal stalk is required for depurination of the SRL by ricin toxin A chain (RTA). The interaction between RTA and ribosomes was characterized by a two-step binding model, where the stalk structure could be considered as an important interacting element. Here, using purified yeast ribosomal stalk complexes assembled in vivo, we show a direct interaction between RTA and the isolated stalk complex. Detailed kinetic analysis of these interactions in real time using surface plasmon resonance (SPR) indicated that there is only one type of interaction between RTA and the ribosomal stalk, which represents one of the two binding steps of the interaction with ribosomes. Interactions of RTA with the isolated stalk were relatively insensitive to salt, indicating that nonelectrostatic interactions were dominant. We compared the interaction of RTA with the full pentameric stalk complex containing two pairs of P1/P2 proteins with its interaction with the trimeric stalk complexes containing only one pair of P1/P2 and found that the rate of association of RTA with the pentamer was higher than with either trimer. These results demonstrate that the stalk is the main landing platform for RTA on the ribosome and that pentameric organization of the stalk accelerates recruitment of RTA to the ribosome for depurination. Our results suggest that multiple copies of the stalk proteins might also increase the scavenging ability of the ribosome for the translational GTPases.
منابع مشابه
Solution structure of human P1•P2 heterodimer provides insights into the role of eukaryotic stalk in recruiting the ribosome-inactivating protein trichosanthin to the ribosome
Lateral ribosomal stalk is responsible for binding and recruiting translation factors during protein synthesis. The eukaryotic stalk consists of one P0 protein with two copies of P1•P2 heterodimers to form a P0(P1•P2)₂ pentameric P-complex. Here, we have solved the structure of full-length P1•P2 by nuclear magnetic resonance spectroscopy. P1 and P2 dimerize via their helical N-terminal domains,...
متن کاملThe catalytic subunit of shiga-like toxin 1 interacts with ribosomal stalk proteins and is inhibited by their conserved C-terminal domain.
Shiga-like toxin 1 (SLT-1) is a type II ribosome-inactivating protein; its A(1) domain blocks protein synthesis in eukaryotic cells by catalyzing the depurination of a single adenine base in 28 S rRNA. The molecular mechanism leading to this site-specific depurination event is thought to involve interactions with eukaryotic ribosomal proteins. Here, we present evidence that the A(1) chain of SL...
متن کاملRicin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk
Ricin toxin A chain (RTA) binds to stalk P-proteins to reach the α-sarcin/ricin loop (SRL) where it cleaves a conserved adenine. Arginine residues at the RTA/RTB interface are involved in this interaction. To investigate the individual contribution of each arginine, we generated single, double and triple arginine mutations in RTA. The R235A mutation reduced toxicity and depurination activity mo...
متن کاملCrystal Structure of Ribosome-Inactivating Protein Ricin A Chain in Complex with the C-Terminal Peptide of the Ribosomal Stalk Protein P2
Ricin is a type 2 ribosome-inactivating protein (RIP), containing a catalytic A chain and a lectin-like B chain. It inhibits protein synthesis by depurinating the N-glycosidic bond at α-sarcin/ricin loop (SRL) of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation center of the ribosome. Here, we present the 1.6 Å crystal structure of Ricin A chain (R...
متن کاملDifferences in Ribosome Binding and Sarcin/Ricin Loop Depurination by Shiga and Ricin Holotoxins
Both ricin and Shiga holotoxins display no ribosomal activity in their native forms and need to be activated to inhibit translation in a cell-free translation inhibition assay. This is because the ribosome binding site of the ricin A chain (RTA) is blocked by the B subunit in ricin holotoxin. However, it is not clear why Shiga toxin 1 (Stx1) or Shiga toxin 2 (Stx2) holotoxin is not active in a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 285 53 شماره
صفحات -
تاریخ انتشار 2010